If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+15t-80=0
a = 4.9; b = 15; c = -80;
Δ = b2-4ac
Δ = 152-4·4.9·(-80)
Δ = 1793
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{1793}}{2*4.9}=\frac{-15-\sqrt{1793}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{1793}}{2*4.9}=\frac{-15+\sqrt{1793}}{9.8} $
| 1/8=0.1252/3i | | (6a-5)=(2a-1) | | (2a-1)=(6a-5) | | (5x+2)=(x-2) | | 3k+120=180 | | 7p+40=180 | | (5x-10)+(6x+1)=180 | | 3e+57=180 | | 9e+117=180 | | 38.433=3.8433*10m | | 2+4(x-1)+2=2(x+2) | | 4x32=4x(40-) | | 10x^2+41-45=0 | | 10x^2+41x-45=0 | | 50=25x/8 | | c+984=1000 | | x=25-0.04x-0.75 | | 3z+15=60 | | 11m+30=m-10 | | 10-3k=5k-8 | | 100xx=150 | | 8f=7f+3 | | 11w=6w+10 | | 2^2x+8-32(2x)+1=0 | | 4g+7=3g+14 | | 13d+7=32 | | -6(5x+6)=-216 | | -6(-6x-7)=-66 | | 4x-5+9x-10=180 | | 5k+1=1/3(3-6k)+2 | | 6m+5-(2-3m)-9m4=13 | | 4(5.3r-2.6)=18.9 |